Finding the Kinematic Base Frame of a Robot by Hand-Eye Calibration Using 3D Position Data

Abstract
When a robot is required to perform specific tasks defined in the world frame, there is a need for finding the coordinate transformation between the kinematic base frame of the robot and the world frame. The kinematic base frame used by the robot controller to define and evaluate the kinematics may deviate from the mechanical base frame constructed based on structural features. Besides, by using kinematic modeling rules such as the product of exponentials (POE) formula, the base frame can be arbitrarily located, and does not have to be related to any feature of the mechanical structure. As a result, the kinematic base frame cannot be measured directly. This paper proposes to find the kinematic base frame by solving a hand-eye calibration problem using 3D position measurements only, which avoids the inconvenience and inaccuracy of measuring orientations and thus significantly facilitates practical operations. A closed-form solution and an iterative solution are explicitly formulated and proved effective by simulations. Comprehensive analyses of the impact of key parameters to the accuracy of the solution are also carried out, providing four guidelines to better conduct practical operations. Finally, experiments on a 7-DOF industrial robot are performed with an optical tracking system to demonstrate the superiority of the proposed method using position data only over the method using full pose data.
More Information:

A Novel Fiber Bragg Grating Displacement Sensor With a Sub-Micrometer Resolution

Abstract

This paper has proposed a novel fiber Bragg grating (FBG) displacement sensor with a sub-micrometer resolution through the use of the transverse property of a suspended optical fiber with a pre-tension force. A wedge-shaped sliding block and a T-shaped cantilever beam formed a conversion mechanism to transfer the horizontal measured-displacement into the transverse movement of the optical fiber midpoint. Compared with existing FBG displacement sensors, this design does not only avoid the FBG-pasting process and its associated issues such as, the chirping failure and low repeatability, but also achieves a high resolution. The sensing principle has been presented, and the corresponding theoretical model has been derived and validated. Experiments show that this design has an excellent sensitivity of 2086.27 pm/mm and a high resolution of 0.48 μm within a range of 1.0~2.0 mm. The displacement results from the proposed sensor closely agree with the values detected from the commercial laser displacement sensor, validating its effectiveness. Therefore, the proposed sensor can be directly utilized to measure the sub-micrometer displacement, and also support multi-point distributed detection.

More Information:

Full Text

Dynamic decoupling control of DGCMG gimbal system via state feedback linearization

Abstract
To radically eliminate the influence of coupling torque caused by gyroscopic effects on system stability and precision and to improve the high precision performance of the low speed gimbal servo system in a double gimbal control moment gyro (DGCMG), this paper proposes a novel composite controller design method combining state feedback linearization and adaptive sliding mode control method. The precision problem caused by residual coupling and nonlinear friction have been successfully solved by introducing an adaptive sliding mode compensator. Simulation and experimental results show that the proposed method realizes dynamics decoupling of gimbal system and enhances system robustness against parameter change and external disturbance
More Information:

Finite Time Fault Tolerant Control for Robot Manipulators Using Time Delay Estimation and Continuous Nonsingular Fast Terminal Sliding Mode Control

In this paper, a novel finite time fault tolerant control (FTC) is proposed for uncertain robot manipulators with actuator faults. First, a finite time passive FTC (PFTC) based on a robust nonsingular fast terminal sliding mode control (NFTSMC) is investigated. Be analyzed for addressing the disadvantages of the PFTC, an AFTC are then investigated by combining NFTSMC with a simple fault diagnosis scheme. In this scheme, an online fault estimation algorithm based on time delay estimation (TDE) is proposed to approximate actuator faults. The estimated fault information is used to detect, isolate, and accommodate the effect of the faults in the system. Then, a robust AFTC law is established by combining the obtained fault information and a robust NFTSMC. Finally, a high-order sliding mode (HOSM) control based on super-twisting algorithm is employed to eliminate the chattering. In comparison to the PFTC and other state-of-the-art approaches, the proposed AFTC scheme possess several advantages such as high precision, strong robustness, no singularity, less chattering, and fast finite-time convergence due to the combined NFTSMC and HOSM control, and requires no prior knowledge of the fault due to TDE-based fault estimation. Finally, simulation results are obtained to verify the effectiveness of the proposed strategy. Index Terms—Fault diagnosis (FD), fault tolerant control (FTC), robot manipulators, terminal sliding mode, time delay estimation (TDE).
 
More Information:

Multi-objective parameter optimization design of a magnetically actuated intravitreal injection device

Abstract
Aiming at intravitreal injection procedures for eye diseases, needless injectors are emerging to puncture complications, save time and improve the safety of the process. In this paper, an injection device based on electromagnetic E-core actuation is selected for its better position control and improved controllability over current solenoid designs. The multi-objective optimization model of the E-core device is derived. Then, an integrated NSGA-II and TOPSIS based on combinatorial weighting approach is proposed for the parameter optimization design of the device and the selection of a final compromise solution or optimal solution. The combination weighting method combines the advantages of the objective and subjective weighting method, making the results more reasonable.
More Information:

Simultaneous Hand–Eye, Tool–Flange, and Robot–Robot Calibration for Comanipulation by Solving the Problem

Abstract
Multirobot comanipulation shows great potential in surpassing the limitations of single-robot manipulation in complicated tasks such as robotic surgeries. However, a dynamic multirobot setup in unstructured environments poses great uncertainties in robot configurations. Therefore, the coordination relationships between the end-effectors and other devices, such as cameras (hand–eye calibration) and tools (tool–flange calibration), as well as the relationships among the base frames (robot–robot calibration) have to be determined timely to enable accurate robotic cooperation for the constantly changing configuration of the systems. We formulated the problem of hand–eye, tool–flange, and robot–robot calibration to a matrix equation AXB=YCZ. A series of generic geometric properties and lemmas were presented, leading to the derivation of the final simultaneous algorithm. In addition to the accurate iterative solution, a closed-form solution was also introduced based on quaternions to give an initial value. To show the feasibility and superiority of the simultaneous method, two nonsimultaneous methods were compared through thorough simulations under various robot movements and noise levels. Comprehensive experiments on real robots were also performed to further validate the proposed methods. The comparison results from both simulations and experiments demonstrated the superior accuracy and efficiency of the proposed simultaneous calibration method.
More Information:

Self-Triggered Output Feedback Control for Consensus of Multi-Agent Systems

Abstract
This paper studies the self-triggered control consensus problem of general linear multi-agent systems(MASs). A novel self-triggered control strategy based on output feedback is proposed for centralized and distributed cases, respectively. In consideration of the states of agents are not available, a state observer is adopted. A dynamic observer-based control law is employed to improve the transient response. Under this triggering strategy, both the estimated states of MASs and the states of controller are updated at triggering time. The next triggering time is predetermined at the last triggering instant. Moreover, the asymptotic consensus of MASs can be guaranteed. Finally, the effectiveness of the proposed control strategy is illustrated by a numerical example.
More Information:

Low-Cost Pyrometry System With Nonlinear Multisense Partial Least Squares

Abstract:

Accurate high-temperature measurement is very important for process monitoring of an industrial system. Infrared thermometers usually can handle no more than 1000 °C and should use some expensive accessories for higher temperature measurements. This paper proposes a low-cost pyrometry system with nonlinear multisense partial least squares (NMSPLS). The ordinary camera with different filters is designed to collect the images of hot object at different wavelengths, and the NMSPLS is presented for predicting the temperature of the hot object from the obtained images. For the proposed method, the obtained images are represented by the multisense tensor, where red, green, and blue are regarded as three different dimensions in a sense of the tensor, respectively. The proposed method integrates an outer model and a nonlinear inner model. For the outer model, the independent variables and the dependent variables are projected into a low-dimensional common latent subspace. The weight matrices are calculated from the independent variables by the tucker decomposition, and the single value decomposition is adopted for extracting the latent variables (Lvs) based on the covariance between the independent variables and the dependent variables. For the nonlinear inner model, the neural network is adopted and the extracted Lvs are used as the input and the output of the neural network, respectively. Two real experiments are performed for estimating the proposed method. The experimental results verify that the proposed method can be applied for pyrometry and have higher effectiveness.

More Information:

Full Text

Electromagnetic needleless injector with halbach array towards intravitreal delivery

Abstract:

The fear of needles and pain prevents some patients from seeking intravitreal treatment, which drives our group to develop a needleless device for performing intravitreal injections. A prototype for an electro-magnetically actuated needleless injector, based on Halbach arrays, is described and characterized in a lab setting. The implication of the prototype for needleless ocular drug delivery is investigated. This investigation is intended to improve drug delivery of glaucoma medication with a safe needleless approach. We detail the design aspects of the injector and characterized the device with custom-made phantoms. It was observed that, despite delivering the drug bolus to the center, the viscous vitreous phantom indicated vorticities similar to counter rotating vortex pairs, which could cause damage to the retina. The observed peak velocity during the phantom experiments was 6.1mm/sec at the retinal layer, indicating that the delivery bolus can impart shear forces to the retina via the vitreous.

More Information:

Full Text

A Millinewton Resolution Fiber Bragg Grating-Based Catheter Two-Dimensional Distal Force Sensor for Cardiac Catheterization

Abstract:

This paper presents the development of a novel 2D Fiber Bragg Grating (FBG)-based micro-force sensing design for detection of catheter tip-tissue interaction forces. A miniature and symmetrical force-sensitive flexure-based catheter distal sensor has been prototyped, and four optical fibers inscribed with one FBG element each have been mounted on it for force and temperature decoupling and detection. The axial property of the tightly suspended fiber configuration has been utilized with a pre-tensioned force, and the embedded FBG element can be stretched and compressed to sense the force-induced and temperature-caused strain variations. The proposed configuration can achieve an improved resolution and sensitivity than the light intensity modulation-based approaches, and avoid the limitations closely associated with the commonly direct FBG-pasting methods such as chirping failure and low repeatability. Finite element modeling (FEM)-based simulation has been implemented to investigate the flexure performance and improve the design. The decoupling approach has been proposed based on the simulation results and implemented to separate and determine the force and temperature. The force-sensing flexure prototype has been calibrated to achieve a resolution of around 4.6mN within the measurement range of 0~3.5 N. Both static calibration experiments and in-vitro dynamic experiments have been performed to prove the feasibility of the proposed design. The decoupling capacity of force and temperature will benefit its broad implementations in generalized intravascular catherization procedures.

More Information:

Full Text