๐Ÿš€Excited to share that our paper โ€œ๐„๐ง๐๐จ๐•๐‹๐€: ๐ƒ๐ฎ๐š๐ฅ-๐๐ก๐š๐ฌ๐ž ๐•๐ข๐ฌ๐ข๐จ๐ง-๐‹๐š๐ง๐ ๐ฎ๐š๐ ๐ž-๐€๐œ๐ญ๐ข๐จ๐ง ๐Œ๐จ๐๐ž๐ฅ ๐Ÿ๐จ๐ซ ๐€๐ฎ๐ญ๐จ๐ง๐จ๐ฆ๐จ๐ฎ๐ฌ ๐“๐ซ๐š๐œ๐ค๐ข๐ง๐  ๐ข๐ง ๐„๐ง๐๐จ๐ฌ๐œ๐จ๐ฉ๐ฒโ€ has been accepted to the Conference on Robot Learning (๐‚๐จ๐‘๐‹) 2025!

In this project, we tackled the unique challenges of robotic endoscopy by integrating vision, language grounding, and motion planning into one end-to-end framework. EndoVLA enables:

– Precise polyp tracking through surgeon-issued prompts

– Delineation and following of abnormal mucosal regions

– Adherence to circumferential cutting markers during resections

We introduced a dual-phase training strategy:

1. ๐’๐ฎ๐ฉ๐ž๐ซ๐ฏ๐ข๐ฌ๐ž๐ ๐Ÿ๐ข๐ง๐ž-๐ญ๐ฎ๐ง๐ข๐ง๐  on our new ๐„๐ง๐๐จ๐•๐‹๐€-๐Œ๐จ๐ญ๐ข๐จ๐ง dataset

2. ๐‘๐ž๐ข๐ง๐Ÿ๐จ๐ซ๐œ๐ž๐ฆ๐ž๐ง๐ญ ๐Ÿ๐ข๐ง๐ž-๐ญ๐ฎ๐ง๐ข๐ง๐  with task-aware rewards

This approach impressively boosts tracking accuracy and achieves zero-shot generalization across diverse GI scenes.

The paper is available at: https://lnkd.in/g35DF7Fq

No alternative text description for this image
No alternative text description for this image
Bookmark the permalink.

Comments are closed.